Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody

نویسندگان

  • Wenjie Luo
  • Wencheng Liu
  • Xiaoyan Hu
  • Mary Hanna
  • April Caravaca
  • Steven M. Paul
چکیده

Microglia have been shown to contribute to the clearance of brain amyloid β peptides (Aβ), the major component of amyloid plaques, in Alzheimer's disease (AD). However, it is not known whether microglia play a similar role in the clearance of tau, the major component of neurofibrillary tangles (NFTs). We now report that murine microglia rapidly internalize and degrade hyperphosphorylated pathological tau isolated from AD brain tissue in a time-dependent manner in vitro. We further demonstrate that microglia readily degrade human tau species released from AD brain sections and eliminate NFTs from brain sections of P301S tauopathy mice. The anti-tau monoclonal antibody MC1 enhances microglia-mediated tau degradation in an Fc-dependent manner. Our data identify a potential role for microglia in the degradation and clearance of pathological tau species in brain and provide a mechanism explaining the potential therapeutic actions of passively administered anti-tau monoclonal antibodies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vectored Intracerebral Immunization with the Anti-Tau Monoclonal Antibody PHF1 Markedly Reduces Tau Pathology in Mutant Tau Transgenic Mice.

Passive immunization with anti-tau monoclonal antibodies has been shown by several laboratories to reduce age-dependent tau pathology and neurodegeneration in mutant tau transgenic mice. These studies have used repeated high weekly doses of various tau antibodies administered systemically for several months and have reported reduced tau pathology of ∼40-50% in various brain regions. Here we sho...

متن کامل

Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement.

The spread of tau pathology correlates with cognitive decline in Alzheimer's disease. In vitro, tau antibodies can block cell-to-cell tau spreading. Although mechanisms of anti-tau function in vivo are unknown, effector function might promote microglia-mediated clearance. In this study, we investigated whether antibody effector function is required for targeting tau. We compared efficacy in viv...

متن کامل

Internalization of the Extracellular Full-Length Tau Inside Neuro2A and Cortical Cells Is Enhanced by Phosphorylation

Tau protein is mainly intracellular. However, several studies have demonstrated that full-length Tau can be released into the interstitial fluid of the brain. The physiological or pathological function of this extracellular Tau remains unknown. Moreover, as evidence suggests, extracellular Tau aggregates can be internalized by neurons, seeding Tau aggregation. However, much less is known about ...

متن کامل

AD2, a phosphorylation-dependent monoclonal antibody directed against tau proteins found in Alzheimer's disease.

Alzheimer's disease is characterized by an intraneuronal aggregation of hyperphosphorylated tau proteins into paired helical filaments. The hyperphosphorylation of tau proteins induces a decrease in their electrophoretic mobility, resulting in a pathological tau triplet referred to as tau 55, 64 and 69 or tau-PHF. We have developed monoclonal antibodies directed against this pathological tau tr...

متن کامل

Passive immunotherapy of tauopathy targeting pSer413-tau: a pilot study in mice

OBJECTIVE Cellular inclusions of hyperphosphorylated tau are a hallmark of tauopathies, which are neurodegenerative disorders that include Alzheimer's disease (AD). Active and passive immunization against hyperphosphorylated tau has been shown to attenuate phenotypes in model mice. We developed new monoclonal antibodies to hyperphosphorylated tau and sought high therapeutic efficacy for future ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015